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Operation Associated to Partitions and Best 
Extension of Signed Measures on Set Logics 
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We offer a new operation on the class of concrete logics based on a partition 
generated by a two-valued state. Then we discuss the problem of the best extension 
of signed measures on the concrete logics and give a series of open problems. 

1. AN O P E R A T I O N  A S S O C I A T E D  TO P A R T I T I O N S  OF 
Q U A N T U M  L O G I C S  

Let E be a quantum logic (orthomodular poset, OMP)  (Gudder, 1979; 
Kalmbach, 1983), and S2(E) the set of  all two-valued finitely additive states 
on E. Consider a maximal,  with respect to inclusion, subset D C E\{0 ,  1} 
satisfying: 

(i) For all a, b e D, (a Z b). 
(ii) I f a ,  b e E \{0 ,  1 } , a  I b a n d a v b  ~ D, then either a e D o r b  

c O .  

Such a subset exists by the Zorn lemma. Put El = D U { 1 }, Eo = {a'  l a 
e El}. Obviously Eo n E1 = Q3. 

Theorem 1.1. The following conditions are equivalent: 
(1) E =  E0 U E~. 
(2) For all a ~ E, (a ~ E0 r a '  E Eo). 
(3) There e x i s t s f  ~ Sz(E) such that El = {a e E l f ( a )  = 1}. 

Proof  (1) ~ (2): If  a ~ E0, then a e El and it follows that a '  e Eo. 
Conversely, if a '  e E0, then a e El and a ~ E0 because Eo n El = ~ .  
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(2) ~ (1): Let x E E\Eo U El. We have x ~e Eo, x '  E E0. Definition 
of  E0 gives us x E E~. This is a contradiction. 

(1) ~ (3): Put 

{10 if x ~ E ,  
f ix )  = if x ~ E0 

Let  us verify t h a t f  E Se(E). Assume a, b ~ E \{0 ,  1} and a • b. Consider 
the case a v b E D. By condition (ii) we have either a E D or b E D. If  a 

D, then b ~ D. It follows that b ~ El, b ~ E 0, a n d f ( a  v b) = l , f ( a )  = 
1 , f (b )  = 0. I f a  v b = 1, then b = a '  and the statement is obvious.  

Consider now the case a v b E E0\ {0}. We have (a v b) '  E D and a 
• (a v b) ' ,  b • (a v b) ' .  It follows by (i) that a ~ D, b ~ D, or a ~ El, 
b ~ El. Consequent ly  we see that a, b E Eo a n d f ( a  v b) = f (a)  = f (b)  = O. 

(3) ~ (1): L e t f  ~ S2(E). Denote by D = {a ~ Elf(a)  = 1}\{1}. We 
show that D is a maximal  subset of  E \{0 ,  1} satisfying (i), (ii). Assume x 

E\{0 ,  1} a n d x  ~ D. Then we h a v e f ( x )  = 0 , f ( x ' )  = 1, and consequently 
x '  E D. Thus we cannot extend D by adding an e lement  x without a breach 
of  condition (i). The rest is straightforward. This finishes the proof. 

Remark 1.2. It is easily seen that statement (3) of  the Theorem 1.1 
implies the heredity of  D: 

a ~ D ,  b E E \ { 0 , 1 } ,  a < - - b ~ b  ~ D  (*) 

There exists an OMP E with S2(E) ~ (~ and with a maximal  subset D 
satisfying (*), but which does not form the partition of  E: consider the O M P  
E with the fol lowing Greechie diagram (Greechie,  1971) 

a b c 

'ii  d I e f 

g "h "k 

and put D = {a ' ,  b ' ,  c ' ,  d, e , f ,  g ' ,  h ' ,  k '} 
for Eo: 

�9 We also offer the analog of  (*) 

a ~Eo,  b e E ,  b < - a ~ b  ~ E o  (**) 

Now, suppose that E is the concrete logic (c.1.) with the support X and 
F is the concrete logic with support Y Let  p = {F0, F~ } be a partition of  F 
as in Theorem 1. i. For every Z C X X Y consider the section Sx(Z) = { y 
E Yl(x, y) E Z} in the point x E X. Put Pi(Z) = {x ~ XISx(Z) ~ Fi}, i = 
0 , 1 .  
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Theorem 1.3. The collection E ~ Fp = {Z C X X YI P0(Z) = P~(Z) c 
E } is a concrete logic on the Cartesian product X X Y which contains all 

sets of  the f o r m A  X B , A  ~ E , B  ~ F. 

Proof First we make two observations: 
(a) Since S~(Z") = S,.(Z)", we have Po(Z") = {x e XtSx(Z") ~ F0} = 

{x ~ XISx(Z) ~ FI} = PI(Z) and PI(Z C) = Po(Z) for all Z C X • Y 
(b) Consider  the condition Po(Z) = PI(Z)"  more  carefully. I f x  is a point 

such that S~(Z) ~ F, then S~(Z) ~ F1 and hence x e PI(Z)". Therefore  x 
Po(Z) and S~(Z) ~ F 0 C F. Thus, if Z e E • F:,, then all sections S~(Z) E 
F for any point x e X! 

Let now Z ~ E t>~ Fp. Then Po(Z") = Pj(Z) = Po(Z) c ~ E, PI(Z c) = 
Po(Z) = PI(Z)"  e E. It fol lows that Po(Z") = PI(Z) = [PI(Z)"]" = [Pl(ZC)]" 
E E a n d Z "  E ED<IFp. 

Suppose N, M ~ E t><l Fp and N A M = Q.  Then clearly S~(N) C3 
Sx(M) = Q for all x ~ X. If  x ~ PI(N) N PI(M), then Sx(N) ~ F1, Sx(M) 

F~ and there is a contradiction with condition (i). This shows that P~(N) 
f3 PI(M) = Q and PI(N) U PI(M) ~ E. 

By observat ion (b), S~(N), S~(M) ~ F; hence S~(N) U S~(M) ~ F. If  
x E PI(N),  that is, S~(N) E F b then f rom (*) we have Sx(N) U S~(M) = 
Sx(N U M) ~ Fl, x E PI(N U M). We obtain PI(N) tO PI(M) C_ PI(N U 
M). Conversely  PI(N U M) = {x ~ xIS~(N LJ M) = Sx(N) U S~(M) 
Fl } C PI(N) LJ PI(M) because S~(N) I Sx(M) and condition (ii) is satisfied. 
Thus we have showed that PI(N) U PI(M) = Pj(N U M). 

Now PI(N U M)" = PI(N)" f-'l PI(M)" = Po(N) A Po(M) and f rom (**) 
we have Po(N U M) = {x ~ xIS~(N) U Sx(M) ~ F0} C Po(N) f-) Po(M). 
Hence Po(N U M)" D PI(N U M). Conversely,  i f x  ~ Po(N U M)", that is, 
x e2 Po(N U M), then S~(N) U S~(M) ~ Fo. It fol lows that S,(N) U S~(M) 
E Fl and h e n c e x  ~ PI(N U M). Thus Po(N U M)" = PI(N U M) E E and 
N U M ~ E X Fp. We have  showed Po(N LJ M) = Po(N) (3 Po(M) also. 

Finally, we  observe that if A ~ E, B e F, then 

{ ~  if x e A 
Sx(A X B) = if x e A c 

{A" if B E F ,  
Po(A • B) = if B e F0 

{ ~  if B ~ F ,  
P~(A • B) = if B e Fo 

Thus Po(A • B) = P~(A • B)" E E and the theorem is proved. 
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Remark  1.4. Theorem 1.3 extends to cases when partitions of  E or E 
and F are taken simultaneously. Our operation extends a construction by 
Muller et al. (1992). 

2. ON THE PROBLEM OF BEST EXTENSION OF S I G N E D  
MEASURES ON F I N I T E  SET L O G I C S  

Let (E, X) be a finite c.1. such that every signed measure (s.m.) v on E 
can be extended as a s.m. v -  on the algebra P(X)  of all subsets of X. Thus, 
there exists a (not unique) function f: X --~ R such that 

9(A) = v/.(A) = ~ f ( x )  (***) 
xeA 

Hence, for two extensions vt, vg the problem of comparison arises. For 
the simple calculation by formula (***) we must consider the extension vf 
"better" than Vg if the function f has more equal values than g. Now we give 
the exact definition. 

Let n ~ N, R(n) = {(nl, n2 . . . . .  n~)lk, n i ~ N ,  nl :> n2 >-- "'" >-- nk, 
nt + n2 + " '"  + nk = n}. Consider the relation t on the set R(n): 

(nl, n2 . . . . .  n~) t (ml, m2 . . . . .  m~) iff 

(a) If  k < j, then nl -> ml. 
(b) If  k = j, then t coincide with the lexicographic relation. 
Then this relation is a partial order relation and (R(n), t) is a lattice. 

Let now E(v) be the set of  all extensions of  the s.m. v to the c.1. (E, X); 
v r, vg E E(v). We suppose t h a t f  = E/k:j ~kilai, )~i ~ )~s, A i  ('] A, = • (i r 
s), L)/k=l Ai = X, and card AI -- card A2 -> "'" ---> card A~. Also we suppose 
the same for the function g = E~:l ~IB~. The (card At, card A2 . . . . .  card 
Ak), (card B1, card B 2 . . . . .  card B/) e R(card X). 

Definition 2.1. For two extensions vf, vg of the signed measure v on the 
finite concrete logic (E, X) we put 

vf >-- v~ iff (card A j, card A 2 . . . . .  card A~) 

(card BI, card B2 . . . . .  card Bj) 

in the lattice R(card X). 
It is easy to see that (E(v), >--) is a partially ordered set. In the example 

below we find the best extensions for some states. 

Example 2.2. Consider the set logic E6, whose Greechie diagram is a 
6-polygon with three atoms on each edge. Then E6 is absolutely regular 
(Sultanbekov, 1993). We examine one of the ten minimal representations for 
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E6 as a concrete logic. Let us denote by P0, PI . . . . .  Ps the vertices and Qo, 
QL . . . . .  Qs the middle atoms of  E6. Put X = {a0, al . . . . .  as, do, dl, d> e} 
and P~ = {a~-l, ak+l, d~}, Q~ = X\Pk U Pk+l (always indices o f ak  are modulo  
6 and indices o f d k  are modulo 3), /~6 = {/sk, 0~ lk  = 0, 1 . . . . .  5}. 

Applying Theorem 1.5 of  Sul tanbekov (1993), we immediately  have 
that dim/~6(v) = 3 for all s.m. v on the (/~6, X). For example,  denote by 
Co, b0 the two-valued states on E 6 determined by eo(Pk) = 1 (k is even), co(Pk) 
= 0 (k is odd), bo(Po) = 1, bo(P~) = 0 (k = 1 . . . . .  5). Then for the extension 

f of  the Co we have f (e)  = - 0 . 5 ,  

f(a~) = 0.5[f(dk) - f(d~+ j) - f(d~+2)] (k is even) 

f(ak) = 0.511 + f(dk) -- f(dk+l) - f(d~+~)] (k is odd) 

Calculat ions show that the best extension of  co is the unique function 
f = 0.5[Ii,l.a3.a51 -- Iiel]. Analogously for the b 0 we find the best extension 
which is the unique function g = 0.5[I{~t.,5.d - /{a3}]. 

3. OPEN PROBLEMS 

Problem 3.1. Let E, F, G be c.1. and F be isomorphic to G (F ~ G). 
Consider  a partition p = { F0, FI } of  the logic F. Does there exist a partition 
q = {Go, GI} of  the logic G such that E ~ Fp ~ E ~ q  G~? 

Problem 3.2. Let M be a c.1. on the X x Y which contains all A X B, 
A E E, B ~ F, where E, F are c.l.s on the set X and set Y, respectively. What  
are necessary and sufficient conditions for  M ~ E ~ Fp? 

Problem 3.3. Let (E, X), (F, Y) be c.l.s. When  does N {Ep t>q Fulp, 
q are partitions in E and F } coincide with the least c.1. containing all sets 
of  the f o r m A  X B ( A  ~ E , B  E F ) ?  

Problem 3.4. Let (E, X), (F, Y) be c.l.s and p a partition of  the F. 
Suppose that the v, w are s.m.s on E and F, respectively. Define a s.m. v t><l 
w on the c.1. E ~ Fp. 

Problem 3.5. Suppose that Problem 3.4 has been solved and vf, wg are 
maximal  e lements  of  E(v) and E(w). Is vf t>~ wg a maximal  e lement  of  
E(v ~.~ w)? 
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